

EirWind Webinar

25th June 2020

This event will begin shortly

Aim of the EirWind project

To conduct multidisciplinary research into development pathways (a Blueprint) for offshore wind in Ireland

Context

- 1. Despite having **one of the best offshore wind resources** in the world, Ireland has been a slow entrant to the sector.
- 2. From this slow starting position, things are **progressing rapidly**.
- 3. Ireland has an opportunity to learn from other jurisdictions, to be totally self-sufficient in energy, and even an energy exporter.

EirWind Consortium

Agenda 25th June 2020:

Introduction Dr Val Cummins

Overview of Studies and Reports Dr Nguyen Dinh

Work Package Reports

WP2 Data Management for Site Evaluation - Dr Jared Peters

WP3 Development Optimisation for Cost Reduction - Dr Jimmy Murphy

WP4 Governance and Biology - Dr Sarah Kandrot

WP5 Markets Infrastructures, Storage and Economic Benefits - Dr Paul Leahy

WP6 Research Synthesis: EirWind Blueprint – Dr Val Cummins

Commentary

Niamh Kenny - DP Energy Sam Roch-Perks - Simply Blue Energy Anita Holgersen – Equinor Martin Finucane - Department of Communications, Climate Action & Environment

Dr Nguyen DINH

EirWind Project Manager, MaREI Centre, ERI, UCC

Cork, June 2020

A Research Process of Quality, Efficiency and Practice

Identify & Design		Validate	Disseminate	
	Every 3 - 4 months		Immediately /	
Consortium Meeting (Industry, Research, Technical Advisors from Governmental Agencies) • Policy updates • Industry updates • Deliverable/Progress presentations, Q&A • Work plan presentations, Q&A	 Research - Industry interactions Online, Individual (Emails/Teams) Online, group (Yammer) Offline meetings Review of research ideas Review of draft reports Data/Practice 	Next Consortium Meeting (Industry, Research team, Technical Advisors from Governmental Agencies)	Peer-review Networking events Journals/Conferences Policy brief/Articles Website & Public Media 	A multi-disciplinary & interactive environment, fit for capacity building vernance- logical Project & Cost Optimisation Market rastructure
 Invited speakers 				& Storage

EirWind background study and reports – June 2020

~ 40 reports from 5 disciplinaries by July

Data and GIS - Speaker Dr Jared Peters

- 1. Data Resources Assessment—Phase 1 (Data Requirements, Gap analysis and Strategic Plan)
- 2. Field Measurement Plan 1
- 3. Data Set Release 1 (Open GIS), in accordance with data standards, and as per the requirements of the industry partners.
- 4. Field Measurement Plan 2

Cost optimisation - Speaker: Dr Jimmy Murphy

- 5. Report of scenario building workshops (for each study site)
- 6. Initial issues on Offshore wind farm development in Ireland.
- 7. Scenario modelling consultations
- 8. Modelling tool description (after completion of development) and application to various scenarios at generic site locations on east, south and west coasts.
- 9. Report on optimization analysis in relation to zone development

Governance - Speaker: Dr Sarah Kandrot

- 10. National stakeholder map / directory
- 11. Recommendations for innovation and best practice in support of approaches to stakeholder engagement in the study areas.
- 12. Comparative analysis of regulatory regime Ire/Scotland
- 13. Governance of offshore wind in the Irish Sea
- 14. Interim report on models for community co-ownership (including best practice in terrestrial and international cases)
- 15. Stakeholder engagement and perception final report
- 16. Socio-economic study
- 17. Study on state bandwidth for offshore wind

Marine Biology

- Methodology outline and scenario identification on mitigation of impacts of offshore wind farms on seabirds
- 19. Initial report on methodology for the assessment of seabird vulnerability to offshore wind farms in Ireland
- 20. Initial results for the assessment of seabird vulnerability to offshore wind farms in Ireland
- 21. Impacts from Offshore Wind Farms on Marine Mammals and Fish – A review of the current knowledge
- 22. Final outputs on seabird vulnerability mapping
- 23. Final report on impacts of offshore wind farms on seabirds and marine mammals

Markets, Infrastructures and Economics

- Speaker: Dr Paul Leahy

- 24. Identification of new and Future Markets
- 25. Cost/Benefit and risk analysis
- 26. Infrastructures and Storage
- 27. System Services
- 28. Demonstration Pilots design and recommendations
- 29. Enhanced review of electrolyser and power-to-gas technologies with a focus on variable operation and system services
- 30. Existing and developing interconnectors and their capacity strategies
- 31. EirWind Outreach Plan

Where to find EirWind's published deliverable reports, papers?

www.marei.ie/project/eirwind/

 \oplus Introduction

+ Work Packages

① Deliverables

Project Outputs

+ Gallery

https://www.linkedin.com/company/eirwindproject/

Next presentation: Dr Jared Peters & WP2

Work Package 2: Data management for site evaluation

WP2: Data Management & GIS

Speaker: Dr Jared Peters

Team: Jared Peters, Felix Butschek & Andrew Wheeler (previous work from Tiny Remmers & Ross O'Connell)

Webinar presentation 25 June 2020

(Cover slide background made from INFOMAR bathymetry data)

Outline

- Data collection
 - Modelling
- Geospatial MCDA

Data resource management

- Reviews:
 - Initial data availability
 - Secondary review (after 1 year)
 - Systematic review of GIS use

Data resource management

Data resource management

- Three research cruises
 - CV18034
 - CV19023
 - CV19026
- 21 days total offshore

Data collection

EirWind [©]MaREI Wind Control Contro

- Three research cruises
- Data totals
 - >400 nm multibeam bathymetry
 - ~200 sediment grabs
 - >30 vibrocores

Data modelling

Data collection

Data modelling

- Seabed (geological) stability
- Visual impact (seascape)
- O&M windows
- Wind resource

MCDA

Multi-Criteria Decision Aid (MCDA)

MCDA

- Weight the criteria
 - Survey experts from industry and academia
 - Analytical Hierarchy Process (AHP)

Results summary

Data management			
Reviews	+New data	Weighted data	MCDA
 Identified data gaps Established standards 12 10 9 7 6 7 6 7 9 	<text></text>	 Expert surveys AHP calculations Adjusted AHP weight 0.24023666 0.175674136 0.145495057 0.142791198 0.141484787 0.11725598 0.112319143 0.092477214 0.062951767 	<text></text>

(Modified from Peters et al., 2020)

Thank you

Reference:

 Peters, J. L., Remmers, T., Wheeler, A. J., Murphy, J., & Cummins, V. (2020). A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices. Renewable and Sustainable Energy Reviews, 128, 109916.

Acknowledgements:

- This research has been partially funded by EirWind's 10 industry partners, Science Foundation Ireland (SFI) under Grant No 12/RC/2302, and University College Cork, Ireland.
- Additional funding: Marine Institute Ship Time Awards CV18034, CV19023, and CV19026. The iCRAG programme (WindEaZ Research Grant; Mar2.2).

Next presentation: WP3, Dr Jimmy Murphy

WP3: Development optimisation for cost reduction

Speaker: Dr Jimmy Murphy Team: Fiona Devoy McAuliffe; Frances Judge; Prasad Gade; Rachel Chester

Cost Reduction for Offshore Wind

Dramatic cost reductions in offshore wind in recent years

- > Larger projects using bigger turbines with higher efficiency
- Reduced cost of capital to finance projects
- > Long pipeline of projects allows supply chain to develop
- > Better project management and operational experience
- > More optimised logistics

Ireland (Arklow Phase 1 aside), is only now starting journey into exploiting offshore wind so given Irish conditions what potential LCoE values can be expected from different sites located off the east, south and west coasts

Levelised Cost of Energy (LCoE)

LCoE is a measure of lifetime costs divided by lifetime energy production

- Development Expenditure (DEVEX)
- > Capital Expenditure (CAPEX)
- Operational Expenditure (OPEX)
- Decommissioning Expenditure (DECEX)
- Lifetime Power Production
- ➤ Units €/MWh or €/kWh

Offshore wind LCOE range and trajectory from 2015 to 2030, including estimated LCOE

26

	C&M Expert Project: test_may2020				
2 EirWind					(* Log out
Hi Frances Judge Admin +	Results Simulation / Reports				
III Dashboard		Circl (1000()			
Project Details	Sims	SIMT (100%)	Vears Data		
💩 Farm Details	Sim1 (100%)	incidents jobs job	Tears Data		
• Resource	Sims Summary	Repair	Shift	Vessel	Distance
🕹 Base Setup 🤇		Repair: Incident time: 23/12/2000 @	Start: 24/12/2000 @ 7:00AM End: 24/12/2000 @ 7:00PM	Deployment: Vessel ID: 0	Distance: Time: hrs
曽 Shift Setup		4:43PM Component: Blade		Speedlimit: Techs worked: 0	
🗑 Technicians					
⊁ Repairs		Journey	Work	Status	Attempts
o \$ Maintenance <		Start: End:	Start: End:	Completed: false Full Recair: false	1470
Scheduling		Transfer: 0 hrs			
X Simulation		Total Loss	Notes		
🖬 Results		rotal LOSS	Notes		
¶⊂ Notifications		Hours: 0 Energy: 0	.NV(24/12/2000)_NV(25/12/2000)_NV(26	5/12/2000)_NV(27/12/2000)_NV(28/12/2000)_	NV(29/12/2000),,NV(30/12/2000),,NV(31/12/2000

Case Study Details

Case study reference		Irish Sea	Celtic Sea	Atlantic Ocean
Turbine Size	MW	12	12	14
Substructure	Text	XL Monopile	Semi-sub	Semi-sub
Number of turbines	Number	41	83	71
Farm capacity	MW	492	996	994
Farm lifecycle	Years	25	25	25
Start	Year	2025	2035	2035
Discount rate	%	5	6.5	6.5

Baseline Results

Case study reference		Irish Sea	Celtic Sea	Atlantic Ocean
Turbine Size	MW	12	12	14
Substructure	Text	XL Monopile	Semi-submersible	Semi-submersible
Number of turbines	Number	41	83	71
Farm capacity	MW	492	996	994
Discount rate	%	5	6.5	6.5
Costs (NPV)	€M	1,927	3,849	4,919
Energy (NPV)	MWh	29,790,968	52,053,189	45,535,752
LCoE	€/MWh	65	74	108
DEVEX	€/MW	134,842	173,378	173,727
CAPEX (dry)	€/MW	1,756,276	2,141,238	2,232,424
Installation	€/MW	475,202	656,642	1,108,855
CAPEX (dry & installation)	€/MW	2,231,479	2,797,880	3,341,279
OPEX (undiscounted)	€/MW/yr	107,040	72,565	94,968
Energy production	MWh	52,777,958	106,540,232	92,614,461
Energy production	MWh/MW	107,272	106,968	93,174
DECEX	€/MW	221,844	164,007	209,354
Salvage revenue	€/MW	58,615	116,595	116,915
Availability (time-based)	%	88.74%	83.69%	68.91%
Availability (energy-based)	%	88.11%	82.58%	68.10%
Capacity factor	%	49%	49%	43%

Optimisation studies - Installation

Optimisation studies – O&M

Cost Optimisations: Floating substructure

Category	Variable
Technology (All)	Substructure type
	Fixed - jacket
	Floating – concrete; semi-spar;
Technology (All)	Increase turbine size (e.g. to 14MW) and reduce number
Installation (Fixed)	Installation Methodology and Vessel fleet Optimisation
Installation (All)	Installation time reduced
O&M (Floating)	Improve OM fleet with higher access for e.g. CTVs up to 2m
	and SOVs up to 4m
O&M (Floating)	Offshore maintenance strategy versus tow out for major
	repairs
O&M (All)	Improved reliability

SITE DESCRIPTION	LCOE (€/M Wh)	REDUCTION (€/MWh)	REDUCTION(%)
Irish Sea (Start year: 2025)	65		
Optimised Irish Sea	58	7	-10%
Celtic Sea (Start year: 2035)	74		
Optimised Celtic Sea	70	4	-5%
Atlantic Ocean (Start year: 2035)	108		
Optimised Atlantic Ocean	84	24	-22%

- The Irish Sea results show why fixed sites using well established technologies and methods have been prioritised for Offshore Wind development.
- The Celtic Sea, indicates very high potential for floating wind but it will happen over a longer timeline and the floating sector must develop incrementally over time to achieve comparable LCoE values to fixed wind
- The Atlantic Ocean sites are feasible for development but will require further improvements in reliability and the ability to undertake operations in more extreme conditions to reduce the LCoE
- The results show that cost reductions can be achieved by detailed examination and optimisation of each stage in the windfarm lifecycle

Thank You

Acknowledgement

"This has been funded by EirWind's 10 industry partners, Science Foundation Ireland (SFI) under Grant No 12/RC/2302, and University College Cork, Ireland"

Next presentation: WP4 Dr Sarah Kandrot

WP4: Ecosystem Governance and Biology

Eirwind Webinar Speaker: Dr Sarah Kandrot WP Leaders: Val Cummins & Mark Jessopp 25 June 2020

WP4: Ecosystem Governance & Biology

Dr Val Cummins WP Leader and co-Pl

Dr Mark Jessopp Co-WP Leader

Dr William Hunt Marine mammals

Dr Emma Critchley Seabird vulnerability

Dr Anne-Marie O'Hagan Legal & Policy Review

Yvonne Cronin Social license to operate – Public perception

Gerard Mullally Social license to operate – Public perception

Dr Mitra Kamidelivand Social license to operate – Building trust

Dr Sarah Kandrot Socioeconomic impacts

Dr Declan Jordan Socioeconomic impacts

Fisheries and Marine Mammals

What? Environmental Impacts of OWFs on Fisheries & Marine Mammals

Who? William Hunt

- Why?
 Vulnerable to disturbance from noise, vessel traffic, and installations
 - Marine mammals protected under Irish and EU legislation
- **How?** Desk based review of current knowledge on impacts and mitigation to inform best practice

Impacts of OWFs on Marine Mammals & Fish

Mitigation measures

What?	Seabird vulnerability to offshore wind
Who?	Emma Critchley
Why?	 Ireland home to birds of international and European importance An important aspect of public perception of offshore wind farms
How?	Development of seabird vulnerability indices from available observational survey data

Seabird Collision (CVI) and Displacement (DVI) vulnerability indices mapped at the national level

-Irish context, incorporating recently published data

-Account for larger 12MW turbines

-Spatial vulnerability at national scale to aid broadscale siting decisions

-Method can be used for fine-scale analysis as more seabird distribution data become available

Exploring co-existence with fishers

Building Trust to Earn Social License to
Operate- Mapping the Benefit Sharing
Mechanisms for the Key Stakeholders in
Irish offshore wind

Who? Mitra Kamidelivand, <u>mitra.kamidelivand@ucc.ie</u>

Why? To explore the opportunities around benefit sharing mechanisms for stakeholders in offshore wind, specifically fishers

How? Desk-based research to develop recommendations on co-existence and benefit sharing models

• Interviews and questionnaires with key stakeholders

Exploring co-existence with fishers in Ireland

Essential elements for co-existence with fishers

- Trust
- Compensation
- Benefit sharing
- Concerns

"Include people from the fishing communities in the decision-making process"

Exploring co-existence with fishers in Ireland

standard

guide

for the

co-existence of

What	Why	When (& how)	
Consultation (gathering opinions from stakeholders will help to define the scope of the dialogue)	Creating engagement tools and materials (to make a vehicle for moving towards trust building)	Start now in 2020 (this research has gathered relevant opinions; this topic is already being discussed by fishers)	dev
—			<u> </u>
Dialogue (an exchange of information with a view to fostering trust and Encouraging initiative to work together)	Mutual understanding of trust and co-existence (to set the strategies)	Immediately after consultation (all participants agreed this is the right time to establish both two-way and group dialogues)	opers in Irel
			ar
Active participation (not just listening and forgetting)	Co-development practices (purposeful in the long-term)	Scheduled meetings after determining the membership of the groupts (e.g., Irish fisheries representatives, energy developers, government, etc.)	Ъг

Why?

What?	Social License to Operate – Public
	perception

- Who? Yvonne Cronin, <u>yvonne.cronindalton@ucc.ie</u>
 - To provide a detailed understanding of the distribution of national opinion
 - To understand what drives positive and negative opinions to inform Industry and Government
 - To understand what drives opinions to inform educators
 - To help steer any potential public awareness campaign

How? Stakeholder mappingMedia content analysisNational survey of public perception

Stakeholder directory

- Government
- Port companies and supply chain
- Research institutions
- Fishing industry

- Oil & gas industry
- Supply chain marine renewables
- Marine Leisure
- Environmental Associations

Key governance issues and stakeholder engagement concerns identified from interviews with developers

Media Content Analysis

- Primary sources of print news has a significant effect on attitudes towards wind farms
- Significant differences in public attitudes between broadsheet and tabloid readers
 -tabloid readers more likely to object to wind development and less likely to support wind
 development
- Review of 5 years of broadsheet coverage generally reflects the positive trajectory of the offshore wind sector in Ireland

- 87% would not object to development of an offshore wind farm in their locality
- 93% would not object to development of an offshore wind farm outside of their locality
- High levels of support are influenced by **previous exposure** to wind farms, including holiday makers (40%)
- Those who already have an offshore wind farm in their area are positive about existing and further development...to a point
- Campaigns should be targeted towards local coastal communities
- Early and transparent engagement is key

Geographical distribution of national survey on offshore wind development

Why?

What? Socioeconomic Study

- Who? Sarah Kandrot, <u>sarah.Kandrot@ucc.ie</u>
 - To understand the domestic economic value and employment potential of the sector for Ireland
 - To inform future policy in relation to the development/growth of an Irish OW supply chain
- How? Development of an economic model to evaluate the domestic economic and employment potential of offshore wind for Ireland

- In 2030, 4.5-5.3GW of domestic offshore wind development would support between 8,316 and 9,795 jobs in the domestic supply chain
- Equates to between 20,563 and 24,219 person years of employment for the period 2020-2029
- Potential to create additional jobs, provided the supply chain grows more quickly than anticipated.

- Offshore wind could generate between €585m and €689m in GVA in 2030
- Total GVA impact of between **€1.4bn and €1.6bn** for the period 2020-2029.

THANK YOU

Acknowledgement

This has been funded by EirWind's 10 industry partners, Science Foundation Ireland (SFI) under Grant No 12/RC/2302, and University College Cork, Ireland

Next presentation: WP5, Dr Paul Leahy

EirWind Workpackage 5: Storage, Infrastructure and Markets Bringing Wind Energy from Irish Waters to Markets

Team: Jochelle Laguipo, Pedro Pereira, Barry Bambury, Paul Leahy, Nguyen Dinh, Eamon McKeogh

Speaker: Dr Paul Leahy

EirWind Webinar June 25th, 2020

Offshore Wind: Resource and Domestic Markets

WP 5 Team

Dr Paul Leahy

Jochelle Laguipo

Pedro Pereira

Barry Dr Nguyen Bambury Dinh

- Climate Action Plan (Government of Ireland, 2019): target of 70% electricity from renewables by 2030: 4.5 GW of offshore wind.
- Total potential for offshore wind development:
 - Up to 23 GW by 2050 without significant adverse effects on the environment. (Eirwind draft synthesis report)
 - 2.5 times current energy demand!

Offshore Wind: What are the markets?

Present Day:

- Domestic electrical energy demand 42 TWh in 2020
- Export electrical energy markets
 - Via interconnectors
- Capacity payments
 - €40,000 / MW / year (2020)
- System Services contracts
 - Awarded to wind farms

To 2030: beyond the kWh

- More emphasis on system services
- More exports
- kWh market will continue to grow with data centres consuming up to 12 TWh
- Power-to-Gas

- Wind-generated electricity can be converted to Hydrogen by electrolysis
- Modern proton-exchange membrane electrolysers are capable of operating under variable conditions at good efficiencies, c. 65%
- Electrolysers are also suitable to provide all grid system services categories

 $2H_2O + energy \rightarrow 2H_2(g) + O_2(g)$

- New investments in technology, infrastructure and storage will be needed to unlock new markets and revenue streams
- We have to move **beyond curtailment** and consider how offshore wind competitiveness can be facilitated by future infrastructural developments

Offshore Wind: Facilitation of New Markets

Pilot/Demonstration Hydrogen Projects Worldwide

A hybrid wind power to gas (P2G) site can absorb some of the excess production of the windfarm.

But – increasing electrolyser capacity may reduce the electrolyser capacity factor

Cost estimates for transport of energy as hydrogen or ammonia by ship and pipeline³⁵.

Note: Hydrogen transported via pipeline is gaseous and liquefied for shipping. Costs include both the transport and storage required; not the conversion, distribution or reconversion.

https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf

Export Markets: Infrastructure

63

Infrastructure

- Measures to increase blend percentage of H₂ in existing natural gas network are required
- Electrical interconnectors do not always guarantee export markets

Transport Markets

• Roll-out of hydrogen distribution and fuelling stations needs planning and incentives

Services

• Electrolysers will have to demonstrate compliance with grid codes

Technology

- Current projects will reduce uncertainty around offshore performance of hydrogen technology
- Future cost trajectory of electrolysers is downwards, but rate is unknown

Economics

 Levelised cost of hydrogen is key – estimates vary but significant incentives will be required at first to allow green hydrogen to compete with fossil fuels

Thank you

Tractebel / ENGIE offshore hydrogen platform concept

Acknowledgement

This work has been funded by EirWind's 10 industry partners, Science Foundation Ireland (SFI) under Grant No 12/RC/2302, and University College Cork, Ireland

Next presentation: Dr Val Cummins

EirWind Research Synthesis A Blueprint for Offshore Wind in Ireland

The market opportunity is the critical factor for analysis in the EirWind synthesis

Domestic electricity

- Strong growth in electricity demand in Ireland inc. data centres (CPPAS) and electric vehicle targets (Eirgrid, 2019)
- Renewable Energy Support Scheme (RESS) 70% of renewable electricity by 2030 four auctions from 2020-2027

Electricity export

• Electricity interconnection capacity 2.2GW by 2026

Looking beyond 2030, can the electricity market alone exploit the resource at a scale to maximise the offshore wind opportunity for Ireland?

- A strong argument that electricity is the best vector for energy
- Supergrid early stage technology development
- DCCAE consultation on an options paper on offshore wind (grid) delivery model

Production Zones

Opportunities & challenges

Pathways

Why Hydrogen?

- More mature innovative technologies
- The cost of producing hydrogen from renewable electricity could fall by 30% by 2030 (IEA, 2019)
- Blue hydrogen opens a door for green hydrogen
- Necessary for at-scale decarbonization of key segments (e.g. fuel cells for transport, gas grid, industrial processes)
- Existing infrastructure, skills and regulations
- Carbon tax will have a critical role in the detailed economic case for Hydrogen replacing oil and gas.

Production Zones

Opportunities & challenges

EirWind market targets - high and low scenarios to 2050

Production Zones

Production Zones

Meeting >23GW from three offshore wind production zones

Irish Sea Production Zone

Bottom Fixed -2020-2035

Arklow Phase 2 + Relevant Projects

Climate Action Plan targets 3.5MW by 2030

Wind ^(O)MaREI

UCC

5GW in the Programme for Government

Circa 5GW to market

LCoE ~€65/MWh* (500MW, 2025)

Circa 89% accessibility

Port Cluster: Rosslare

*Baseline without optimisation

Opportunities & challenges

Pathways

Celtic Sea Production Zone

Bottom Fixed and Floating

2025-2045

Circa 9GW to market

LCoE ~€74/MWh* (1GW 2035) Floating

Circa 84% accessibility

Route to market imperative

Cork Hydrogen Hub concept (100MW)

*Baseline without optimisation

Production Zones

Scenarios

Opportunities & challenges

Pathways
Atlantic Production Zone

Floating Wind plus new technologies (e.g. wave)

2030-2050

Circa 9GW to market

LCoE (~€108/MWh)* 1GW, 2035 Floating

Circa 69% accessibility

Kick starter = strong grid node at Moneypoint

Port cluster: Shannon Foynes Port

Big Prize post 2040 = bulk hydrogen production and distribution at competitive market price

*Baseline without optimisation

Production Zones

Opportunities & challenges

Summary of Opportunities and Challenges

Decarbonisation	Regional Developmen	nt Commu Benef	nity its	
Energy Security	€585-€690m in GVA by 2030	Supply Chain	Marine Installation	
8,300-9,700 jobs by 2030	Port Clusters		Areas	
Centralised v Decentralised Delivery Models	Metocean Conditions	Social Licence to Operate	Data Gaps	
Achieving Economies of Scale	Energy Infrastructur Challenges	Extra p makers DHPLG, DC more resou agencies e	Extra policy makers e.g. DHPLG, DCCAE and more resources for agencies e.g. SEAI	
Droduci	tion Zonos		Dothways	

Recommendations for offshore wind in Ireland

Scenarios

Production Zones

Opportunities & challenges

Develop a **shared vision** to harness the full potential of Ireland's unmatched offshore wind resource to transform our energy future

Scenarios

Production Zones

Opportunities & challenges

stakeholders e.g. fisheries, coastal partnerships

THANK YOU

To the EirWind research team, consortium and technical advisors

Nguyen Dinh, Michael Sweeney, Yvonne Cronin

Acknowledgement:

This research has been funded by ten industry partners: DP Energy Ireland, Equinor ASA, Enerco Energy, Statkraft Ireland, Brookfield Renewable Ireland, EDP Renewables, SSE Renewables, Simply Blue Energy, ENGIE, and Electricity Supply Board; ; Science Foundation Ireland (SFI) Grant No 12/RC/2302, and University College Cork, Ireland

GUEST SPEAKERS

Niamh Kenny Business Development Manager - DP Energy

Sam Roch-Perks Co- Founder and CEO -Simply Blue Energy

Anita H. Holgersen Business Development Director - Equinor

Martin Finucane Principal Officer -Dept. Communications, Climate Action and Environment

Thank You For more information: marei.ie/project/eirwind/

LAPP'S QUAY

Statkraft Brookfield

edp renewables

