

Policy Simulation Modelling to Inform National Carbon Budget Pathways

Ms. Vera O'Riordan, Dr. Tomás Mac Uidhir, Dr. Fionn Rogan Energy Policy and Modelling Group MaREI, SFI Centre for Energy, Climate, and Marine, University College Cork, Ireland

Ireland's Green House Gas Emissions

Where do they come from?

Source: Environmental Protection Agency, (Ireland) 2022 accessible at https://www.epa.ie/ghg

GHG Emissions in Ireland by sector (Past: 1990 - 2021, Targeted: 2025, 2030, 2050)

GHG Emissions in Ireland by sector (Past: 1990 - 2021, Targeted: 2025, 2030, 2050)

GHG Emissions in Ireland by sector (Past: 1990 - 2021, Targeted: 2025, 2030, 2050)

Public Transport

Transport Policies

Bio fu e l Ble n d in g Working from Home 845,000 EVs Eco-driving with HGVs 95,000 Electric LGVs 3500 Electric HGVs Ra il e le c trific a tion Electric buses

Additional 500,000 public & active trips

Increased biofuel blending rates for ethanol (10%) and biodiesel (12%)

Transport Policies

Bio fu e l Ble n d in g Working from Home 845,000 EVs Eco-driving with HGVs 95,000 Electric LGVs 3500 Electric HGVs Ra il e le c trific a tion Electric buses

Additional 500,000 public & active trips

Working from home 2 days per week, where possible

Tra	n s	p	0	rt	Po	lic	ie	S
-----	-----	----------	---	----	----	-----	----	---

Bio fu e l Ble n d in g

Working from Home

845,000 EVs

Eco-driving with HGVs

95,000 Electric LGVs

3500 Electric HGVs

Ra il e le ctrific a tion

Electric buses

Additional 500,000 public & active trips

Introduction of 854,000 Electric vehicles by 2030

Tra	n	S	p	0	rt	Po	lic	ie	S
-----	---	---	---	---	----	----	-----	----	---

Bio fu e l Ble n d in g

Working from Home

845,000 EVs

Eco-driving with HGVs

95,000 Electric LGVs

3500 Electric HGVs

Ra il e le c trific a tio n

Electric buses

Additional 500,000 public & active trips

10% improvement in fuel efficiency due to training/ improved practices

Transport Policies	
Bio fu e l Ble n d in g	
Working from Home	
845,000 EVs	
Eco-driving with HGVs	
95,000 Electric LGVs	Increased electrification of Freight
3500 Electric HGVs	transport (Heavy & Light Goods)
Ra il e le c trific a tio n	
Electric buses	
Additional 500,000 public & active trips	

Transport Policies	
Bio fu e l Ble n d in g	
Working from Home	
845,000 EVs	
Eco-driving with HGVs	
95,000 Electric LGVs	
3500 Electric HGVs	
Ra il e le c trific a tion	Increased electrification of Public
Electric buses	transport (Rail & Buses)

Additional 500,000 public & active trips

Transport Policies

Bio fu e l Ble n d in g

Working from Home

845,000 EVs

Eco-driving with HGVs

95,000 Electric LGVs

3500 Electric HGVs

Ra il e le c trific a tion

Electric buses

Additional 500,000 public & active trips

Rapid increase in use of public transport and active modes

2026 - 2030

Slide 7/10

Policies Synergies – the bonus effect

Modal Shift + Public Transport Electrification

Diminishing Returns – the double counting effect

EVs + Biofuel Blending

Reflections and Future Work

Climate Action Plan 2023 policies Climate Action Plan 2024 policies Impact of early action and delays on carbon budgets

Behavioural changes and new technologies beyond those targets in the Climate Action Plan 2023

Slide 10/10

Questions & suggestions welcome, **Thanks for listening!**

Ms. Vera O'Riordan PhD Student vera.oriordan@ucc.ie

Dr. Tomás MacUidhir Senior Postdoctoral Researcher t.macuidhir@ucc.ie

Dr. Fionn Rogan Senior Research Fellow f.rogan@ucc.ie

	Car	bon Budget 1		Carbon Budget 2								
		2021-2025		2026-2030								
	Sector			Sector								
	Emission	Reference	UCC SC	Emission	Reference	UCC SC						
	Ceiling	Scenario	Scenario	Ceiling	Scenario	Scenario						
	MTCO ₂ eq.											
Electricity	40	46	39	20	29	21						
Transport	54	59	50	37	66	42						
Residential	29	32	28	23	31	20						
Services	7	12	11	5	15	9						
Industry	30	21	20	24	24	15						
Other (F gases &												
Petroleum refining)	9	19	19	8	19	17						
Agriculture	106	106 124 121 96 123 12										

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
		MTCO ₂ eq.											
Reference	65.7	65.1	62.2	62.7	65.2	68.4	67.9	65.6	64.7	65.1	65.6	66.2	67.2
Energy	35.6	35.3	32.5	32.5	34.7	35.9	36.1	33.4	33.3	33.1	33.5	33.7	33.9
Non-Energy	30.1	29.8	29.7	30.2	30.5	32.5	31.8	32.2	31.5	32.0	32.1	32.4	33.3
Energy (%)	54%	54%	52%	52%	53%	52%	53%	51%	51%	51%	51%	51%	50%
Non-Energy (%)													
	46%	46%	48%	48%	47%	48%	47%	49%	49%	49%	49%	49%	50%
UCC Sectoral													
Ceilings	65.7	64.8	61.7	59.5	61.3	63.7	61.9	58.4	56.0	54.9	53.6	52.5	52.1
Energy	35.6	34.7	31.7	29.4	30.9	31.4	30.3	26.4	24.8	23.3	21.8	20.5	19.2
Non-Energy	30.1	29.8	29.7	30.2	30.4	32.4	31.6	32.0	31.2	31.6	31.7	32.0	32.9
Energy (%)	54%	54%	51%	49%	50%	49%	49%	45%	44%	42%	41%	39%	37%
Non-Energy (%)	46%	46%	48%	51%	50%	51%	51%	55%	56%	58%	59%	61%	63%

• Multi-sector energy and emissions simulation model methodology with carbon budget analysis is presented

• Interaction effect between public transport and modal shift showing additional savings of 0.1 MTCO2passenger transport decarbonisation policies is examined

• Interaction effect showing emissions savings overlap and 'double counting' effect between EVs uptake and biofuel blending of 0.3MTCO2, and EVs and modal shift 0.2MTCO2

• Transport, Residential, Industry and Electricity sectors meet Carbon Budget 1 (2021 – 2025) in the scenario presented

• Residential and Services sector meets Carbon Budget 2 (2026-2030) sectoral ceilings in scenario presented

